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Recently, large language and language-and-vision mod-
els, such as OpenAI’s ChatGPT and DALL-E, have 
sparked much interest and discussion. These systems 
are trained on an unprecedentedly large amount of data 
and generate novel text or images in response to 
prompts. Typically, they are pretrained with a relatively 
simple objective such as predicting the next item in a 
string of text correctly. In some more recent systems, 
they are also fine-tuned both by their designers and 
through reinforcement learning by human feedback—
humans judge the texts and images the systems gener-
ate and so further shape what the systems produce.

A common way of thinking about these systems is 
to treat them as individual agents and then debate how 
intelligent those agents are. The phrase “an AI” rather 
than “AI” or “AI system,” implying individual agency, is 

frequently used. Some have claimed that these models 
can tackle complex commands (e.g., Bubeck et  al., 
2023), perform abstract reasoning such as inferring 
theory of mind (e.g., Kosinski, 2023), and demonstrate 
creativity (e.g., Summers-Stay et al., 2023) in a way that 
parallels individual human agents.

We argue that this framing is wrong. Instead, we 
argue that the best way to think of these systems is as 
powerful new cultural technologies, analogous to ear-
lier technologies such as writing, print, libraries, the 
Internet, and even language itself (Gopnik, 2022a, 
2022b). Large language and vision models provide a 
new method for easy and effective access to the vast 
amount of text that others have written and images that 
others have shaped. These AI systems offer a new 
means for cultural production and evolution, allowing 
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Abstract
Much discussion about large language models and language-and-vision models has focused on whether these models 
are intelligent agents. We present an alternative perspective. First, we argue that these artificial intelligence (AI) 
models are cultural technologies that enhance cultural transmission and are efficient and powerful imitation engines. 
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a small child can produce.
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information to be passed efficiently from one group of 
people to another (Bolin, 2012; Boyd & Richerson, 
1988; Henrich, 2018). They aggregate large amounts of 
information previously generated by human agents and 
extract patterns from that information.

This contrasts with perception and action systems 
that intervene on the external world and generate new 
information about it. This contrast extends beyond per-
ception and action systems themselves. The kinds of 
causal representations that are embodied in theories, 
either scientific or intuitive, are also the result of truth-
seeking epistemic processes (e.g., Gopnik & Wellman, 
2012); they are evaluated with respect to an external 
world and make predictions about and shape actions 
in that world. New evidence from that world can radi-
cally revise them. Causal representations, like percep-
tual representations, are designed to solve “the inverse 
problem” (Palmer, 1999): the problem of reconstructing 
the structure of a novel, changing, external world from 
the data that we receive from that world. Although such 
representations may be very abstract, as in scientific 
theories, they ultimately depend on perception and 
action—on being able to perceive the world and act on 
it in new ways.

These truth-seeking processes also underlie some AI 
systems. For example, reinforcement learning systems, 
particularly model-based systems, can be understood 
as systems that act on the world to solve something 
similar to an inverse problem. They accumulate data to 
construct models of the world that allow for broad and 
novel generalization. In robotics, in particular, systems 
such as these make contact with an external world, alter 
their models as a result, and allow for novel actions 
and generalizations, although these actions and gener-
alizations are still very limited. Similarly, a number of 
AI approaches have integrated causal inference and 
theory formation into learning mechanisms in an 
attempt to design more human-like systems (Goyal & 
Bengio, 2022; Lake et  al., 2015; Pearl, 2000). These 
systems are, however, very different from the typical 
large language and vision models that instead rely on 
relatively simple statistical inference applied to enor-
mous amounts of existing data.

Truth-seeking epistemic processes contrast with the 
processes that allow faithful transmission of representa-
tions from one agent to another, regardless of the relation 
between those representations and the external world. 
Such transmission is crucial for abilities such as language 
learning and social coordination. There is considerable 
evidence that mechanisms for this kind of faithful trans-
mission are in place early in development and play a 
particularly important role in human cognition and cul-
ture (Meltzoff & Moore, 1977; Meltzoff & Prinz, 2002).

However, such mechanisms may also be actively  
in tension, for good and ill, with the truth-seeking 

mechanisms of causal inference and theory formation. 
For example, in the phenomenon of “overimitation” 
human children (and adults) reproduce all the details 
of a complex action sequence even when they are not 
causally relevant to the outcome of that action (Lyons 
et al., 2011; Whiten et al., 2009).

Overimitation may increase the fidelity and efficiency 
of cultural transmission for complex actions. However, 
it also means that that transmission is not rooted in a 
causal understanding that could be altered by further 
evidence in a changing environment. Similarly, there is 
evidence that children begin by uncritically accepting 
testimony from others about the world and revise that 
testimony only when it is directly contradicted by other 
evidence (Harris & Koenig, 2006).

We argue that large language models (LLMs) enable 
and facilitate this kind of transmission in powerful and 
significant ways by summarizing and generalizing from 
existing text. However, nothing in their training or 
objective functions is designed to fulfill the epistemic 
functions of truth-seeking systems such as perception, 
causal inference, or theory formation. Even though 
state-of-the-art LLMs have been trained to estimate 
uncertainty over the validity of their claims (Kadavath 
et al., 2022), their output prediction probabilities do not 
distinguish between epistemic uncertainty, which relates 
to the lack of knowledge and can be resolved with more 
training data, and aleatoric uncertainty (relating to 
chance or stochasticity and so irreducible; Huang et al., 
2023; Lin et al., 2023). The fact that such systems “hal-
lucinate” (Azamfirei et al., 2023) is a well-known prob-
lem but badly posed—“hallucination” implies that the 
agent discriminates between veridical and nonveridical 
representations in the first place, and LLMs do not.

This contrast between transmission and truth is in 
turn closely related to the imitation/innovation contrast 
in discussions of cultural evolution in humans (Boyd & 
Richerson, 1988; Henrich, 2018; Legare & Nielsen, 2015; 
Tomasello et al., 1993). Cultural evolution depends on 
the balance between these two different kinds of cogni-
tive mechanisms. Imitation allows the transmission of 
knowledge or skill from one person to another (Boyd 
et al., 2011; Henrich, 2016). Innovation produces novel 
knowledge or skill through contact with a changing 
world (Derex, 2022). Imitation means that each indi-
vidual agent does not have to innovate—they can take 
advantage of the cognitive discoveries of others. But 
imitation by itself would be useless if some agents did 
not also have the capacity to innovate. It is the combi-
nation of the two that allows cultural and technological 
progress.

Of course, imitation and transmission may involve 
some kinds of generalization and novelty. A Wikipedia 
entry, for example, or even an old-fashioned newspaper 
article, is the result of multiple human editors collectively 
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shaping new text that none of them could have gener-
ated alone. The result involves a kind of generalization 
and novelty. Large language models produce similar gen-
eralizations. Similarly, it may be possible at times to 
produce a kind of innovation simply by generalizing 
from actions that are already known. If I know that a 
2-ft ladder will reach a shelf, I may be able to immedi-
ately infer that a taller ladder will allow me to reach an 
even higher shelf, even if I have not seen the ladder used 
that way before.

However, striking innovations that allow novel adap-
tations to novel problems and environments require 
inferences that go beyond the information that has 
already been acquired. These inferences may take off 
from existing causal models to generate new causal 
possibilities that are very different from those that have 
been observed or transmitted earlier, or they may inspire 
new explorations of the external world. From the AI 
perspective a useful way of thinking about it is that 
imitation involves a kind of interpolative generalization: 
Within what is already known, skills and knowledge are 
utilized, emulated, and shared across a variety of con-
texts. On the other hand, innovation reflects a more 
extrapolative or “out-of-distribution” generalization.

In any given case, it may be difficult to determine 
which kinds of cognitive mechanisms produced a par-
ticular kind of representation, behavior, knowledge, or 
skill. For example, my answer to an exam question in 
school might simply reflect the fact that I have remem-
bered what I was taught, and I can make small gener-
alizations from that teaching. Or it might indicate that 
I have knowledge that would allow me to make novel 
predictions about or perform novel actions on the 
external world. Probing the responses of large language 
models may give us a tool to help answer that ques-
tion—at least, in principle. If large models that are 
trained only on language internal statistics can repro-
duce particular competencies, for example, producing 
grammatical text in response to a prompt, that suggests 
that those abilities can be developed through imita-
tion—extracting existing knowledge encoded in the 
minds of others. If not, that suggests that these capaci-
ties may require innovation—extracting knowledge 
from the external world.

Thus, large language and vision models provide us 
with an opportunity to discover which representations 
and cognitive capacities, in general, human or artificial, 
can be acquired purely through cultural transmission 
itself and which require independent contact with the 
external world—a long-standing question in cognitive 
science (Barsalou, 2008; Gibson, 1979; Grand et  al., 
2022; Landauer & Dumais, 1997; Piantadosi, 2023).

In this article, we explore what state-of-the-art large 
language and language-and-vision models can  

contribute to our understanding of imitation and inno-
vation. We contrast the performance of models trained 
on a large corpus of text data, or text and image data, 
with that of children.

Large Language and Language-and-
Vision Models as Imitation Engines

Imitation refers to the behavior of copying or reproduc-
ing features or strategies underlying a model’s behavior 
(Heyes, 2001; Tomasello, 1990). It implies interpolative 
generalization. The way the question or context is pre-
sented may vary, but the underlying behavior or idea 
stems from a repertoire of knowledge and skills that 
already exist. By observing and imitating others, indi-
viduals acquire the skills, knowledge, and conventions 
that are essential to effectively participate in their cul-
tural groups, promoting cultural continuity over time. 
An assortment of technological innovations such as writ-
ing, print, the Internet, and—we would argue—LLMs, 
have made this imitation much more effective over time.

Moreover, cultural technologies not only allow 
access to information; they also codify, summarize, and 
organize that information in ways that enable and facili-
tate transmission. Language itself works by compressing 
information into a digital code. Writing and print simi-
larly abstract and simplify from the richer information 
stream of spoken language while allowing at the same 
time wider temporal and spatial access to that informa-
tion. Print, in addition, allows many people to receive 
the same information at the same time, and this is, of 
course, highly amplified by the Internet. At the same 
time, indexes, catalogs, libraries, and, more recently, 
Wikis and algorithmic search engines allow humans to 
quickly find relevant text and images and use those 
texts and images as a springboard to generate addi-
tional text and images.

Deep learning models trained on large data sets 
today excel at imitation in a way that far outstrips earlier 
technologies and so represent a new phase in the his-
tory of cultural technologies. Large language models 
such as Anthropic’s Claude and OpenAI’s ChatGPT can 
use the statistical patterns in the text in their training 
sets to generate a variety of new text, from emails and 
essays to computer programs and songs. GPT-3 can 
imitate both natural human language patterns and par-
ticular styles of writing close to perfectly. It arguably 
does this better than many people (M. Zhang & Li, 
2021). Strikingly and surprisingly, the syntactic structure 
of the language produced by these systems is accurate. 
There is some evidence that large language models can 
even grasp language in more abstract ways than humans 
and imitate human figurative language understanding 
(e.g., Jeretic et  al., 2020; Stowe et  al., 2022). This 
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suggests that finding patterns in large amounts of 
human text may be enough to pick up many features 
of language, independent of any knowledge about the 
external world.

In turn, this raises the possibility that children learn 
features of language or images in a similar way. In 
particular, this discovery has interesting connections to 
the large body of empirical literature showing that 
infants are sensitive to the statistical structure of lin-
guistic strings and visual images from a very young age 
(e.g., Kirkham et  al., 2002; Saffran et  al., 1996). The 
LLMs suggest that this may enable much more powerful 
kinds of learning than we might have thought, such as 
the ability to learn complex syntax.

On the other hand, although these systems allow 
skilled imitation, the imitation that they facilitate may 
differ from that of children in important ways. There 
are debates in the developmental literature about how 
much childhood imitation simply reflects faithful cul-
tural transmission (as in the phenomenon of overimita-
tion) and how much it is shaped by and in the service 
of broader truth-seeking processes such as understand-
ing the goals and intentions of others. Children can 
meaningfully decompose observed visual and motor 
patterns in relation to the agent, target object, move-
ment path, and other salient features of events (Bek-
kering et  al., 2000; Gergely et  al., 2002). Moreover, 
children distinctively copy intentional actions (Meltzoff, 
1995), discarding apparently failed attempts, mistakes, 
and causally inefficient actions (Buchsbaum et al., 2011; 
Schulz et al., 2008) when they seek to learn skills from 
observing other people (Over & Carpenter, 2013). 
Although the imitative behavior of large language and 
vision models can be viewed as the abstract mapping 
of one pattern to another, human imitation appears to 
be mediated by goal representation and the understand-
ing of causal structure from a young age. It would be 
interesting to see whether large models also replicate 
these features of human imitation.

Can Large Language and Language-
and-Vision Models Innovate?

Can LLMs discover new tools?

Where might we find empirical evidence for this con-
trast between transmission and truth, imitation and 
innovation? One important and relevant set of capaci-
ties involves tool use and innovation. The most ancient 
representative of the human genus is called Homo habi-
lis (“handy man”) because of their ability to discover 
and use novel stone tools. Tool use is one of the best 
examples of the advantages of cultural transmission 
and of the balance between imitation and innovation. 
Imitation allows a novice to observe a model 

and reproduce their actions to bring about a particular 
outcome, even without understanding entirely the fine 
physical mechanisms and causal properties of the tool. 
Techniques such as “behavior cloning” in AI and robot-
ics use a similar approach.

Again, however, the ability to imitate and use exist-
ing tools in an interpolative way depends on the paral-
lel ability to discover new tools in an extrapolative way. 
Tool innovation is an indispensable part of human lives, 
and it has also been observed in a variety of nonhuman 
animals such as crows (Von Bayern et al., 2009) and 
chimpanzees (Whiten et al., 2005). Tool innovation has 
often been taken to be a distinctive mark of intelligence 
in biological systems (Emery & Clayton, 2004; Reader 
& Laland, 2002).

Tool use can then be a particularly interesting point 
of comparison for understanding imitation and innova-
tion in both models and children. Both computational 
models and humans can encode information about 
objects (e.g., Allen et al., 2020), but their capabilities 
for tool imitation versus tool innovation might differ. 
In particular, our hypothesis would predict that the 
models might capture familiar tool uses well (e.g., pre-
dicting appropriately that a hammer should be used to 
bang in a nail). However, these systems might have 
more difficulty producing the right responses for tool 
innovation involving unusual or novel tools, which 
depends on discovering and using new causal proper-
ties, functional analogies, and affordances.

We might, however, also wonder whether young chil-
dren can themselves perform this kind of innovation, 
or whether it depends on explicit instruction and experi-
ence. Physically building a new tool from scratch and 
then executing a series of actions that lead to a desired 
goal is a difficult task for young children (Beck et al., 
2011). But children might find it easier to recognize new 
functions in everyday objects and to select appropriate 
object substitutes in the absence of typical tools to solve 
various physical tasks. In an ongoing study of tool inno-
vation (Yiu & Gopnik, 2023), we have investigated 
whether human children and adults can insightfully use 
familiar objects in new ways to accomplish particular 
outcomes and compared the results to the output of 
large deep learning models such as GPT-3 and GPT-4.

Tool innovation can involve designing new tools 
from scratch, but it can also refer to discovering and 
using old tools in new ways to solve novel problems 
(Rawlings & Legare, 2021). We might think of this as 
the ability to make an out-of-distribution generalization 
about a functional goal. Our experiment examines the 
latter type of tool innovation.

Our study has two components: an “imitation” com-
ponent (making an interpolative judgment from existing 
knowledge about objects) and an “innovation” compo-
nent (making an extrapolative judgment about the new 
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ways that objects could be used). In the innovation part 
of the study, we present a series of problems in which 
a goal has to be executed in the absence of the typical 
tool (e.g., drawing a circle in the absence of a com-
pass). We then provide alternative objects for partici-
pants to select: (a) an object that is more superficially 
similar to the typical tool and is associated with it but 
is not functionally relevant to the context (e.g., a ruler), 
(b) an object that is superficially dissimilar but has the 
same affordances and causal properties as the typical 
tool (e.g., a teapot that possesses a round bottom), and 
(c) a totally irrelevant object (e.g., a stove). In the imita-
tion part of the study, we present the same sets of 
objects but ask participants to select which of the object 
options would “go best” with the typical tool (e.g., a 
compass and a ruler are more closely associated than 
a compass and a teapot).

So far, we have found that both children aged 3 to 
7 years old presented with animations of the scenario 
(n = 42, Mage = 5.71 years, SD = 1.24) and adults (n = 
30, Mage = 27.80 years, SD = 5.54) can recognize com-
mon superficial relationships between objects when 
they are asked which objects should go together  
(Mchildren = 88.4%, SEchildren = 2.82%; Madults = 84.9%, 
SEadults = 3.07%). But they can also discover new func-
tions in everyday objects to solve novel physical prob-
lems and so select the superficially unrelated but 
functionally relevant object (Mchildren = 85.2%, SEchildren = 
3.17%; Madults = 95.7%, SEadults = 1.04%). In ongoing 
work, we have found that children demonstrate these 
capacities even when they receive only a text descrip-
tion of the objects, with no images.

Using exactly the same text input that we used to 
test our human participants, we queried OpenAI’s GPT-
4, gpt-3.5-turbo, and text-davinci-003 models; Anthrop-
ic’s Claude; and Google’s FLAN-T5 (XXL). Because we 
noticed that the models could alter their responses 
depending on how the order of options was presented, 
we queried the models six times for every scenario to 
account for the six different orders that could be gener-
ated by the three options. We set model outputs as 
deterministic with a temperature of 0 and kept the 
default values for all other parameters (Binz & Schulz, 
2023; Hu et al., 2022). We averaged the scores (1 for 
selecting the relevant object and 0 for any other 
response) across the six repeated trials. As we predicted 
we found that these large language models are almost 
as capable of identifying superficial commonalities 
between objects as humans are. They are sensitive to the 
superficial associations between the objects, and they 
excel at our imitation tasks (MGPT4 = 83.3%, SEGPT4 = 
4.42%; Mgpt-3.5-turbo = 73.1%, SEgpt-3.5-turbo = 5.26%; Mdavinci = 
59.9%, SEdavinci = 5.75%; MClaude = 69.9%, SEClaude = 5.75%; 
MFlan = 74.8%, SEFlan = 5.17%)—they generally respond 
that the ruler goes with the compass. However, they 

are less capable than humans when they are asked  
to select a novel functional tool to solve a problem 
(MGPT4 = 75.9%, SEGPT4 = 4.27%; Mgpt-3.5-turbo = 58.9%, 
SEgpt-3.5-turbo = 5.64%; Mdavinci = 8.87%, SEdavinci = 2.26%; 
MClaude = 58.16%, SEClaude = 6.06%; MFlan = 45.7%, SEFlan = 
5.42%)—they again choose the ruler rather than the 
teapot to draw a circle. This suggests that simply learn-
ing from large amounts of existing language may not 
be sufficient to achieve tool innovation. Discovering 
novel functions in everyday tools is not about finding 
the statistically nearest neighbor from lexical co-occur-
rence patterns. Rather, it is about appreciating the more 
abstract functional analogies and causal relationships 
between objects that do not necessarily belong to the 
same category or are associated in text. In these exam-
ples, people must use broader causal knowledge, such 
as understanding that tracing an object will produce a 
pattern that matches the object’s shape, to produce a 
novel action that has not been observed or described 
before, in much the same way a scientific theory, for 
example, allows novel interventions on the world 
(Pearl, 2000). Compared with humans, large language 
models are not as successful at this type of innovation 
task. On the other hand, they excel at generating 
responses that simply demand some abstraction from 
existing knowledge.

One might ask whether success on our task also 
requires visual and spatial information rather than merely 
text. Indeed, GPT-4, a large multimodal model that is 
trained on larger amounts of images and text, demon-
strates better performance than the other large language 
models on both the innovative and imitative tasks. 
Nevertheless, despite the massive amounts of vision and 
language training data, it is still not as innovative as 
human adults are when they discover new functions 
in existing objects. It is also unclear whether GPT-4’s 
improved performance stems from its multimodal 
character or from reinforcement learning from human 
feedback—a point we return to later.

Can LLMs discover novel causal 
relationships and use them to design 
interventions?

Discovering novel tools depends on being able to infer 
a novel causal relationship, such as drawing a circle by 
tracing the bottom of a teapot. A substantial amount of 
research shows that even very young children excel at 
discovering such relationships. Information about 
causal structure can be conveyed through imitation and 
cultural transmission. In fact, from a very young age, 
even infants will reproduce an action they have 
observed to bring about an effect (Waismeyer et  al., 
2015). However, very young children can also infer 
novel causal structure by observing complex statistical 
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relations among events, and most significantly, by act-
ing on the world themselves to bring about effects like 
a scientist performing experiments (Cook et al., 2011; 
Gopnik et al., 2004, 2017; Gopnik & Tenenbaum, 2007; 
Schulz et al., 2007). Causal discovery is a particularly 
good example of a cognitive process that is directed at 
solving an inverse problem and discovering new truths 
through perception and action. Moreover, these pro-
cesses of causal discovery do not depend on particular 
assumptions about “intuitive physics.” Very young chil-
dren can make such inferences about psychological and 
social relationships as well as physical ones, and they 
can discover new causal relations that actually contra-
dict the assumptions of intuitive physics (Gopnik & 
Wellman, 2012).

In another line of research (Kosoy et al., 2022, 2023), 
we have explored whether LLMs and other AI models 
can discover and use novel causal structure. In these 
studies we use a virtual “blicket detector”—a machine 
that lights up and plays music when you put some 
objects on it but not others. The blicket detector can 
work on different abstract principles or “overhypoth-
eses”: individual blocks may activate it, or you may 
need a combination of blocks to do so. An overhypoth-
esis refers to an abstract principle that reduces a 
hypothesis space at a less abstract level (Kemp et al., 
2007), and a causal overhypothesis refers to transferable 
abstract hypotheses about sets of causal relationships 
(Kosoy et al., 2022). If you know that it takes two blocks 
to make the machine go, you will generate different 
specific hypotheses about which blocks are blickets.

The blicket detector tasks intentionally involve a new 
artifact, described with new words, so that the partici-
pants cannot easily use past culturally transmitted infor-
mation, such as the fact that flicking a light switch makes 
a bulb go on. Assumptions about intuitive physics will 
also not enable a solution. In these experiments, we 
simply ask children to figure out how the machines work 
and allow them to freely explore and act to solve the task 
and determine which blocks are blickets. Even 4-year-old 
children spontaneously acted on the systems and discov-
ered their structure—they figured out which ones were 
blickets and used them to make the machine go.

We then gave a variety of LLMs, including OpenAI’s 
ChatGPT, Google’s PaLM, and most recently LaMDA, 
the same data that the children produced, described in 
language (e.g., “I put the blue one and the red one on 
the machine and the machine lit up”) and prompted 
the systems to answer questions about the causal struc-
ture of the machine (e.g., “Is the red one a blicket?”).

LLMs did not produce the correct causal overhypoth-
eses from the data. Young children, in contrast, learned 
novel causal overhypotheses from only a handful of 
observations, including the outcome of their own 

experimental interventions, and applied the learned 
structure to novel situations. In contrast, large language 
models and vision-and-language models, as well as 
both deep reinforcement learning algorithms and 
behavior cloning, struggled to produce the relevant 
causal structures, even after massive amounts of train-
ing compared with children. This is consistent with 
other recent studies: LLMs produce the correct text in 
cases such as causal vignettes, in which the patterns 
are available in the training data, but often fail when 
they are asked to make inferences that involve novel 
events or relations in human thought (e.g., Binz & 
Schulz, 2023; Mahowald et al., 2023), sometimes even 
when these involve superficially slight changes to the 
training data (e.g., Ullman, 2023).

Challenges of Studying Large Language 
and Language-and-Vision Models: The 
Questions Left Unanswered

It is difficult to escape the language of individual 
agency, for example, to ask whether AI can or cannot 
innovate (e.g., González-Díaz & Palacios-Huerta, 2022; 
Stevenson et al., 2022), solve a causal problem (e.g., 
Kıcıman et al., 2023), or even can or cannot be sentient 
or intelligent (e.g., Mitchell, 2023). A great deal of the 
discussion about AI has this character. But we empha-
size again that the point of this work is neither to 
decide whether or not LLMs are intelligent agents nor 
to present some crucial comparative “gotcha” test that 
would determine the answer to such questions in AI 
systems. Instead, the research projects we have briefly 
described here are a first step in determining which 
representations and competences, as well as which kinds 
of knowledge or skill, can be derived from which learn-
ing techniques and data. Which kinds of knowledge can 
be extracted from large bodies of text and images, and 
which depend on actively seeking the truth about an 
external world?

We want to emphasize again that other AI systems, 
such as model-based reinforcement learning or causal 
inference systems, may indeed more closely approxi-
mate truth-seeking cognitive systems. In fact, we also 
evaluated the performance of other AI systems, includ-
ing two popular deep reinforcement learning algo-
rithms, Advantage Actor Critic (A2C) and Proximal 
Policy Optimization Version 2 (PPO2), which are trained 
on all possible overhypotheses prior to the test trials. 
Although these systems are conceptually closer to the 
truth-seeking systems children use, they are still extremely 
limited in comparison.

There is a great deal of scope for research that uses 
developmental-psychology techniques to investigate AI 
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systems and vice versa (Frank, 2023). Of course, there 
are anecdotal instances in which large language models 
seem to exhibit intelligent-like behaviors (Bubeck et al., 
2023), solving arguably novel and complex tasks from 
physics and mathematics to story writing and image 
generation. Nonetheless, developmentalists have long 
realized that superficially similar behaviors, including 
creative- and innovative-like behaviors in humans and 
AI models, can have very different psychological origins 
and can be the result of very different learning tech-
niques and data. As a result, we have put considerable 
methodological energy into trying to solve this prob-
lem. A particular conversation with a child, however 
compelling, is just the start of a proper research pro-
gram including novel, carefully controlled tests such as 
our tests of tool innovation and novel causal inference. 
The conversation may reflect knowledge that has come 
through imitation within the training data set, statistical 
pattern recognition, reinforcement from adults, or con-
ceptual understanding; the job of the developmental 
psychologist is to distinguish these possibilities. This 
should also be true of our assessments of AI systems.

At the same time AI systems have their own proper-
ties that need to be considered when we compare their 
output to that of humans. These can sometimes be 
problematic; for example, once a particular cognitive 
test is explicitly described in Internet text, it then 
becomes part of a large language model’s training  
sample—we found that in some cases the systems 
referred to our earlier published blicket-detector articles 
as the source for their answers. There are many more 
cases in the literature in which large language models, 
including GPT-4, seem to respond to novel examples 
sampled from the training distribution almost perfectly 
(again reinforcing that they are perfect imitators) but 
then fail miserably to generalize to out-of-distribution 
examples that require the discovery of more abstract 
causal hypotheses and innovation (e.g., Chowdhery 
et al., 2022; Talmor et al., 2020; H. Zhang et al., 2022).

In addition, the more recent versions of GPT, GPT-4, 
and GPT-3.5, have also been fine-tuned through rein-
forcement learning from human feedback. This also 
raises problems. Reinforcement learning from human 
feedback may itself be considered a method for enabling 
cultural transmission. However, in practice, we know 
very little about exactly what kinds of feedback these 
systems receive or how they are shaped by that feed-
back. Reinforcement learning from human feedback is 
both opaque and variable and may simply edit out the 
most obvious mistakes and errors.

On the other hand, these systems, particularly the 
“classic” LLMs, also have the advantage that we know 
more about their data and learning techniques than we 
do about those of human children. For example, we 

know that the data for GPT systems is Internet text and 
that the training function involves predicting new text 
from earlier text. We know that large language models 
and language-and-vision models are built on deep neu-
ral networks and trained on immense amounts of unla-
beled text or text-image pairings.

These kinds of techniques may indeed contribute to 
some kinds of human learning as well. Children do 
learn through cultural transmission and statistical gen-
eralizations from data. But human children also learn 
in very different ways. Although we do not know the 
details of children’s learning algorithms or data, we do 
know that, unlike large language and language-and-
vision models, children are curious, active, self-super-
vised, and intrinsically motivated. They are capable of 
extracting novel and abstract structures from the envi-
ronment beyond statistical patterns, spontaneously 
making overhypotheses and generalizations, and apply-
ing these insights to new situations.

Because performance in large deep learning models 
has been steadily improving with increasing model size 
on various tasks, some have advocated that simply scal-
ing up language models could allow task-agnostic, few-
shot performance (e.g., Brown et al., 2020). But a child 
does not interact with the world better by increasing 
their brain capacity. Is building the tallest tower the 
ultimate way to reach the moon? Putting scale aside, 
what are the mechanisms that allow humans to be 
effective and creative learners? What in a child’s “train-
ing data” and learning capacities is critically effective 
and different from that of LLMs? Can we design new AI 
systems that use active, self-motivated exploration of 
the real external world as children do? And what we 
might expect the capacities of such systems to be? Com-
paring these systems in a detailed and rigorous way 
can provide important new insights about both natural 
intelligence and AI.

Conclusion

Large language models such as ChatGPT are valuable 
cultural technologies. They can imitate millions of 
human writers, summarize long texts, translate between 
languages, answer questions, and code programs. Imita-
tive learning is critical for promoting and preserving 
knowledge, artifacts, and practices faithfully within 
social groups. Moreover, changes in cultural technolo-
gies can have transformative effects on human societies 
and cultures—for good or ill. There is a good argument 
that the initial development of printing technology con-
tributed to the Protestant Reformation. Later improve-
ments in printing technology in the 18th century were 
responsible for both the best parts of the American 
Revolution and the worst parts of the French Revolution 
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(Darnton, 1982). Large language and language-and-
vision models may well have equally transformative 
effects in the 21st century.

However, cultural evolution depends on a fine bal-
ance between imitation and innovation. There would 
be no progress without innovation—the ability to 
expand, create, change, abandon, evaluate, and improve 
on existing knowledge and skills. Whether this means 
recasting existing knowledge in new ways or creating 
something entirely original, innovation challenges the 
status quo and questions the conventional wisdom that 
is the training corpus for AI systems. Large language 
models can help us acquire information that is already 
known more efficiently, even though they are not inno-
vators themselves. Moreover, accessing existing knowl-
edge much more effectively can stimulate more 
innovation among humans and perhaps the develop-
ment of more advanced AI. But ultimately, machines 
may need more than large-scale language and images 
to match the achievements of every human child.
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